If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-11y-90=0
a = 2; b = -11; c = -90;
Δ = b2-4ac
Δ = -112-4·2·(-90)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-29}{2*2}=\frac{-18}{4} =-4+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+29}{2*2}=\frac{40}{4} =10 $
| -155=5(1-8k) | | −3(4r−8)=−36 | | (2x+1)*(x+5)=5 | | 5x-4/2=3x+1/5 | | 6a2=24 | | (5+3x)4=68 | | (9/y)+(3/y)=2 | | (-1x^/2)=-6x+20 | | X+x+1/3-5=0 | | 2(x/2-9)=-28 | | 49^(x-2)=343 | | 1/4x+3=3/4x+1 | | √x=6 | | (X+3)^2+5=(x+5)(x-5)+(4-x) | | 48x-29x=38 | | x+2/2+x+1/3=5 | | 15t=100;t=6 | | C=5/9x(41-32) | | 1/3(2y+6)=y-4 | | 2x^2+29x-4.5=0 | | -3a+7=34 | | -3x-7=7 | | -10=-9+p | | (X+2)/2+(x+1)/3=5 | | 2(75)+2(136)=p | | -2-6z=-7z | | 19b=-19+20b | | 12=c+9 | | 7x=-119 | | 5x-18=x+18 | | 4x-8=-2+4 | | 100(4R+4r)=5/3 |